5 蝗コ螳夂せ縺ョ霑ス霍。

縺�∪�後ヱ繝ゥ繝。繝シ繧ソ縺ッ荳€螳壼€、縺ォ螳壹a縺ヲ縺翫¥�弱@縺溘′縺」縺ヲ�御サ・荳九�蠑上〒縺ッ 螟画焚 $\lambda$ 繧堤怐逡・縺吶k [*]�� 蝗コ螳夂せ縺ョ縺�縺�◆縺��菴咲スョ縺ッ�梧焚蛟、繧キ繝・繝溘Ξ繝シ繧キ繝ァ繝ウ縺ォ繧医▲縺ヲ螳ケ譏薙↓蠕励i繧後k�� 縺薙�繝��繧ソ縺九i莉サ諢上�邊セ蠎ヲ縺ョ豁」遒コ縺ェ菴咲スョ縺後>縺セ�檎衍繧翫◆縺�→縺励h縺�シ� 縺昴l縺ォ縺ッNewton豕輔r逕ィ縺�k��

Newton譁ケ縺ョ繧「繝ォ繧エ繝ェ繧コ繝�繧堤ー。蜊倥↓蠕ゥ鄙偵☆繧具シ� $F(\mbox{\boldmath$\ x $})=0,\,
\mbox{\boldmath$\ x $} \in \mbox{\boldmath$R$}^n$縺ィ縺吶k縺ィ�碁未謨ー $F(\mbox{\boldmath$\ x $})$縺ョ�� 隨ャ$k$霑台シシ $\mbox{\boldmath$\ x $}^{(k)}$縺セ繧上j縺ョTaylor螻暮幕縺ッ��

\begin{displaymath}
F(\mbox{\boldmath$ x $}) = F(\mbox{\boldmath$ x $}^{(k)}) + ...
...(\mbox{\boldmath$ x $} - \mbox{\boldmath$ x $}^{(k)}) + \cdots
\end{displaymath} (5.10)

縺ァ陦ィ縺輔l繧具シ弱%縺薙〒 $F'(\mbox{\boldmath$\ x $}^{(k)}) =
(\partial f_i/ \partial x_j)$縺ッJacobi陦悟�縺ァ縺ゅk�手ソ台シシ蛟、縺ョ菫ョ豁」驥� $\mbox{\boldmath$\ h $} =
\mbox{\boldmath$\ x $}^{(k+1)} - \mbox{\boldmath$\ x $}^{(k)}$縺ッ谺。縺ョ蠑上〒荳弱∴繧峨l繧具シ�
\begin{displaymath}
F'(\mbox{\boldmath$ x $}^{(k)})\mbox{\boldmath$ h $}
= -F(\mbox{\boldmath$ x $}^{(k)})
\end{displaymath} (5.11)

Newton豕輔�莠梧ャ。蜿取據縺ァ縺ゅj�後°縺ェ繧翫h縺�ャャ$k$霑台シシ $\mbox{\boldmath$\ x $}^{(k)}$繧剃ク弱∴縺溘i�� 謨ー蝗槭�蜿榊セゥ縺ァ邊セ蠎ヲ縺ョ濶ッ縺�ソ台シシ隗」縺悟セ励i繧後k莉慕オ�∩縺ォ縺ェ縺」縺ヲ縺�k��

縺輔※�訓oincaré 蜀吝ワ縺ョ譁ケ遞句シ�(8)縺ョ蝗コ螳夂せ縺ョ霑台シシ蛟、繧� $\mbox{\boldmath$\ x $}_0^{(k)}$縺ィ縺吶k�弱>縺セ��

\begin{displaymath}
F(\mbox{\boldmath$ x $}_0) = \mbox{\boldmath$ x $}_0 - T(\mbox{\boldmath$ x $}_0) = 0
\end{displaymath} (5.12)

縺ィ縺励◆縺ィ縺搾シ檎ャャ$k+1$谺。縺ョ霑台シシ隗」繧貞セ励k繧「繝ォ繧エ繝ェ繧コ繝�縺ッ谺。縺ョ縺ィ縺翫j��
\begin{displaymath}
\begin{array}{rcl}
\mbox{\boldmath$ x $}^{(k+1)}_0 & = & \mb...
...math$ h $} & = & -F(\mbox{\boldmath$ x $}^{(k)}_0)
\end{array}\end{displaymath} (5.13)

縺薙%縺ァ�� $F'(\mbox{\boldmath$\ x $}_0^{(k)})$縺ッ蛻晄悄蛟、 $\mbox{\boldmath$\ x $}_0$縺ォ髢「縺吶k蠕ョ蛻�↓繧医k隨ャ$k$谺。縺ョ Jacobi陦悟�$(2 \times 2)$縺ァ��
\begin{displaymath}
F'(\mbox{\boldmath$ x $}^{(k)}_0) = I - \frac{\partial
T}{\partial \mbox{\boldmath$ x $}}(\mbox{\boldmath$ x $}^{(k)}_0)
\end{displaymath} (5.14)


\begin{displaymath}
\frac{\partial T}{\partial \mbox{\boldmath$ x $}}(\mbox{\bol...
...\partial y_0} (2\pi, x_0^{(k)}, y_0^{(k)})
\end{array}\right]
\end{displaymath} (5.15)

縺ィ縺ェ繧具シ弱◆縺�縺暦シ�$I$縺ッ$(2 \times 2)$縺ョ蜊倅ス崎。悟�縺ァ縺ゅk�� 蠑�(13)縺ョ隨ャ2蠑上��� $\mbox{\boldmath$\ h $}$縺ォ縺、縺�※�� Gauss縺ョ謗�″蜃コ縺玲ウ輔↑縺ゥ縺ァ 隗」縺九↑縺上※縺ッ縺ェ繧峨↑縺�シ� $F(\mbox{\boldmath$\ x $}_0^{(k)})$縺ッ髢「謨ー蛟、縺昴�繧ゅ�繧剃ク弱∴繧九→繧医>縺鯉シ� 蝠城。後��悟シ�(15)縺ョ Jacobi陦悟�縺ョ隕∫エ�(蛛丞セョ蛻��蛟、��)繧偵←縺�d縺」縺ヲ豎ゅa繧九°縺ァ縺ゅk��

縺。繧�▲縺ィ蜈�↓繧ゅ←縺」縺ヲ閠�∴縺ヲ縺ソ繧医≧�� 蠑�(2)繧呈嶌縺咲峩縺�:

\begin{displaymath}
\frac{d \mbox{\boldmath$ x $}}{dt} = \mbox{\boldmath$ f $}(t,\mbox{\boldmath$ x $}).
\end{displaymath} (5.16)

縺溘□縺暦シ� $\mbox{\boldmath$\ x $} = (x,y)^t, \,
\mbox{\boldmath$\ f $}(t, \mbox{\boldmath$\ x $}) =
(f_1(t, \mbox{\boldmath$\ x $}),f_2(t, \mbox{\boldmath$\ x $}))^t $縺ィ縺吶k�� $(\varphi_1, \varphi_2)^t = \mbox{\boldmath$\ \varphi $}$縺ィ縺励◆縺ィ縺搾シ� 蛻晄悄蛟、 $\mbox{\boldmath$\ x $}_0$縺九i蜃コ逋コ縺吶k蠑�(16)縺ョ隗」繧�
\begin{displaymath}
\mbox{\boldmath$ x $}(t) = \mbox{\boldmath$ \varphi $}(t, \mbox{\boldmath$ x $}_0)
\end{displaymath} (5.17)

縺ィ縺励h縺�シ� 縺薙�隗」繧貞シ�(16)縺ォ莉」蜈・縺吶k縺ィ��
\begin{displaymath}
\frac{d \mbox{\boldmath$ \varphi $}}{dt}(t, \mbox{\boldmath$...
...}(t, \mbox{\boldmath$ \varphi $}(t, \mbox{\boldmath$ x $}_0)).
\end{displaymath} (5.18)

縺薙�蠑上r $\mbox{\boldmath$\ x $}_0$縺ァ蠕ョ蛻�☆繧具シ弱☆繧九→��
\begin{displaymath}
\frac{\partial}{\partial \mbox{\boldmath$ x $}_0}\left(
\fr...
...box{\boldmath$ \varphi $}(t, \mbox{\boldmath$ x $}_0)) \right)
\end{displaymath} (5.19)

蟾ヲ霎コ縺ョ蠕ョ蛻��鬆�コ上�螟画峩縺ァ縺阪k�主承霎コ繧りィ育ョ励☆繧九→��
\begin{displaymath}
\frac{d}{dt}\left(
\frac{\partial \mbox{\boldmath$ \varphi $...
...{\partial \mbox{\boldmath$ x $}_0}(t,\mbox{\boldmath$ x $}_0).
\end{displaymath} (5.20)

縺薙�蠑上��後o縺九j繧�☆縺乗嶌縺肴鋤縺医k縺ィ��
\begin{displaymath}
\frac{dX}{dt} = \frac{d \mbox{\boldmath$ f $}}{d \mbox{\boldmath$ x $}}X
\end{displaymath} (5.21)

縺ィ縺ェ繧具シ弱▽縺セ繧� $X = \partial \mbox{\boldmath$\ \varphi $} / \partial \mbox{\boldmath$\ x $}_0$縺ッ 邱壼ス「陦悟�蠕ョ蛻�婿遞句シ�[*]縺ョ蝓コ譛ャ陦悟�隗」 [*]縺ィ縺ェ縺」縺ヲ縺�k�� 縺薙�蠑�(20)縺ッ蠑�(16)縺ョ螟牙�譁ケ遞句シ上→縺�o繧後k��

縺ィ縺薙m縺ァ

\begin{displaymath}
\frac{\partial \mbox{\boldmath$ \varphi $}}
{\partial \mbox{\boldmath$ x $}_0}(0,\mbox{\boldmath$ x $}_0)
= I
\end{displaymath} (5.22)

縺ァ縺ゅk��$I$縺ッ$(n \times n)$縺ョ蜊倅ス崎。悟�縺ァ縺ゅk�� 蠑�(22)繧貞�譛溷€、縺ィ縺励※�悟シ�(20)繧呈凾蛻サ$t=0$縺九i $2\pi$縺セ縺ァ謨ー蛟、遨榊�縺吶l縺ー�悟シ�(15)繧呈アゅa繧� 縺薙→縺後〒縺搾シ君ewton豕輔↓繧医▲縺ヲ邊セ蟇�↑蝗コ螳夂せ縺ョ菴咲スョ $\mbox{\boldmath$\ x $}_0$ 縺� 豎ゅa繧峨l繧具シ弱∪縺�$m$-蜻ィ譛溽せ縺梧アゅa縺溘>蝣エ蜷医�遨榊�繧�$2m\pi$縺セ縺ァ 螳溯。後☆繧後�繧医>��

User & 2017-09-07