Bifurcation and Chaos in the Extended BVP Oscillator

T. Ueta and H. Kawakami

Tokushima University, Japan

Coupled oscillators

* practical industrial applications models

Q biological activities

Coupled oscillators

* practical industrial applications models
\& biological activities

Decomposite a complex nonlinear dynamics into unit oscillators and their connections

Coupled oscillators

* practical industrial applications models

Q biological activities

Decomposite a complex nonlinear dynamics into unit oscillators and their connections

a reduced dynamical system with symmetry
synchronization
(2lobal/local bifurcations

Previous studies

Resistively coupled BVP oscillators

Symmetrical connected oscillators have much variety of synchronization modes of limit cycles

Previous studies

Resistively coupled BVP oscillators

Symmetrical connected oscillators have much variety of synchronization modes of limit cycles

* but do not have chaos within reasonable parameter range.

Previous studies

Resistively coupled BVP oscillators

* Symmetrical connected oscillators have much variety of synchronization modes of limit cycles
* but do not have chaos within reasonable parameter range.
* since symmetrical properties rather build "mild" dynamics.

Previous studies

Resistively coupled BVP oscillators

\& Symmetrical connected oscillators have much variety of synchronization modes of limit cycles

* but do not have chaos within reasonable parameter range.
* since symmetrical properties rather build "mild" dynamics.
Q asymmetrical coupling induces Chaos !

Single BVP oscillator

Single BVP oscillator

Circuit equation:

$$
\begin{aligned}
C \frac{d v}{d t} & =-i-g(v) \\
L \frac{d i}{d t} & =v-r i+E
\end{aligned}
$$

Bifucations in single BVP

Resistively coupled BVP oscillators

$v-v$ coupled BVP oscillators

* T. Ueta, et al., Strange attractor in resistively coupled BVP oscillators, In Proc. 2001 Int. Conf. on Progress in Nonlinear Science, Russia, July 2001.

$v-i$ coupled BVP oscillators

* T. Ueta, et al., Bifurcation and Chaos in Asymmetrically Coupled BVP Oscillators, ISCAS 2002, Scottsdale, Arizona, Int. J. Bifurcation and Chaos (to appear)

In this talk. . .

Reducing the $v-i$ coupled circuit

In this talk. . .

Reducing the $v-i$ coupled circuit

removing $g\left(v_{2}\right)$, letting $r_{2}=\infty, R=0$,

In this talk. . .

Reducing the $v-i$ coupled circuit

removing $g\left(v_{2}\right)$, letting $r_{2}=\infty, R=0$,

Extended BVP oscillator

Extended BVP

Chua

This circuit have already shown as one of all combinations of $L, C, r, g(v)$. [Chua et al, 1992]

Extended BVP oscillator

Extended BVP

Chua

This circuit have already shown as one of all combinations of $L, C, r, g(v)$. [Chua et al, 1992] But not mentioned these dynamics.

Extended BVP oscillator

Extended BVP

Chua

This circuit have already shown as one of all combinations of $L, C, r, g(v)$. [Chua et al, 1992] But not mentioned these dynamics.
Naturally induced from coupled system!

Circuit equation

$$
\left\{\begin{array}{l}
C \frac{d v_{1}}{d t}=-i-g\left(v_{1}\right) \\
C \frac{d v_{2}}{d t}=i-\frac{v_{2}}{r} \\
L \frac{d i}{d t}=v_{1}-v_{2}
\end{array}\right.
$$

Circuit equation

$$
\begin{gathered}
\left\{\begin{array}{c}
C \frac{d v_{1}}{d t}=-i-g\left(v_{1}\right) \\
C \frac{d v_{2}}{d t}=i-\frac{v_{2}}{r} \\
L \frac{d i}{d t}=v_{1}-v_{2}
\end{array}\right. \\
g(v)=-a \tanh b v, \quad \tau=t / \sqrt{L C} \\
\gamma=a b \sqrt{\frac{L}{C}}, \quad \delta=\frac{1}{r} \sqrt{\frac{L}{C}} \\
x=\frac{v_{1}}{a} \sqrt{\frac{C}{L}}, \quad y=\frac{v_{2}}{a} \sqrt{\frac{C}{L}}, \quad z=\frac{i}{a}
\end{gathered}
$$

Normalized equation

$$
\begin{aligned}
\dot{x} & =-z+\tanh \gamma x \\
\dot{y} & =z-\delta y \\
\dot{z} & =x-y
\end{aligned}
$$

Equivalently,

$$
\dddot{x}+\alpha(x) \ddot{x}+\beta(x, \dot{x}) \dot{x}+\delta x-\tanh \gamma x=0
$$

where,

$$
\begin{aligned}
& \alpha(x)=\delta-\gamma \operatorname{sech}^{2} \gamma x \\
& \beta(x, \dot{x})=2+2 \gamma^{2} \operatorname{sech}^{2} \gamma x \tanh \gamma x \dot{x}-\delta \gamma \operatorname{sech}^{2} \gamma x
\end{aligned}
$$

$g(v)=-a \tanh b v$

γ-sensitivity:

Implementation of $g(v)$

The output of an inverter driving this circuit can realize $-a \tanh b v$.

Experimental measurement

Bifurcation diagram

Bifurcation and Chaosin the Extended BVP Oscillator - p.16/31

Bifurcation diagram (magnified)

Double scroll

$x-y$

$y-z$

$x-z$

Perspectives

Perspectives

Laboratory experiments

By changing an serial resistance in $g(v)$, $r=467[\Omega]$.

Jack-in-the-box phenomenon

Bifurcation and Chaosin the Extended BVP Oscillator - p.22/31

Jack-in-the-box phenomenon(2)

Long transient of jack-in-the-box

$$
\left.\left(x_{0}, y_{0}, z_{0}\right)=(3,5,8), 8\right)
$$

Long transient of jack-in-the-box

$$
\left.\left(x_{0}, y_{0}, z_{0}\right)=(3,5,8), 8\right)
$$

Long transient of jack-in-the-box

$$
\left(x_{0}, y_{0}, z_{0}\right)=(3.00001,5,8)
$$

Long transient of jack-in-the-box

$\left(x_{0}, y_{0}, z_{0}\right)=(3.00001,5,8)$

Generation of jack-in-the-box

Basin boundary in single BVP

Basin boundary in single BVP

Basin boundary in single BVP

Each basin is continuously separable.

Basin boundary of a 2D map

Lorenz system

© Bernd Krauskopf and Hinke Osinga Stable manifold of the origin forms a "surface."

Basin boundary ($x-y$ plane, with $z=0$)

Basin boundary ($x-y$ plane, with $z=0$)

Basin boundary ($x-y$ plane, with $z=0$)

Basin boundary ($x-y$ plane, with $z=0$)

Fractal basin is not appeared !

Conclusions

The extended BVP oscillator

* analyses of bifurcations and chaos
* Jack-in-the-box phenomenon

Q Blurred basin boundary
Future problems

* investigation of the stable manifold of the origin
* 3D structure of the basin boundary (stable manifold)

