Automatic threshold adjustment for limit cycles holding a specified U stability in hybrid systems

Tetsushi Ueta and Yuu Miino

March 9, 2016

Tokushima University, Japan at NCSP2016, Waikiki, Honolulu, Hawaii

Hybrid systems

Hybrid systems—Finite automata

Computation of bifurcation sets in hybrid systems

 T. Kousaka, T. Ueta, and H. Kawakami, "Bifurcation of switched nonlinear dynamical systems," IEEE Trans. CAS-II, 46, no. 7, pp. 878–885, 1999.

• ...

• Y. Miino, D. Ito, and T. Ueta, "A computation method for non-autonomous systems with discontinuous characteristics," Chaos, Solitons & Fractals, **77**, 8, pp. 277–285, 2015. Given the hybrid system:

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x})$$

where, **f** contains several different dynamical systems aligned by a threshold $\bm{x}_{\rm th} \in \bm{R}$

Assume that a solution is written by:

$$\mathbf{x}(t) = \mathbf{\phi}(t, \mathbf{x}_0), \quad \mathbf{x}(0) = \mathbf{\phi}(0, \mathbf{x}_0) = \mathbf{x}_0.$$

Our speciality

$$\frac{d\mathbf{x}}{dt} = \begin{cases} \mathbf{f}_0(\mathbf{x}) & \text{if } \mathbf{x} \in R_1 & \Leftrightarrow \varphi_0 \\ \mathbf{f}_1(\mathbf{x}) & \text{if } \mathbf{x} \in R_2 & \Leftrightarrow \varphi_1 \\ \vdots \\ \mathbf{f}_{m-1}(\mathbf{x}) & \text{if } \mathbf{x} \in R_{m-1} & \Leftrightarrow \varphi_{m-1} \end{cases}$$

where R_i is a region of *i*.

We can evaluate $\frac{\partial \varphi_j}{\partial \mathbf{x}_{thj}}$ even though \mathbf{x}_{thj} are implicit parameters!

D. Ito, T. Ueta, and K. Aihara: IEICE Trans. Fundum. JA-94, No. 8, 2011. (Japanese)

Perturbations

The fixed point of the Poincaré map: *T*(**x**):

$$T(\boldsymbol{x}_0) - \boldsymbol{x}_0 = \boldsymbol{0} \tag{1}$$

The characteristic equation:

$$\chi(\mu) = \det(DT(\mathbf{x}_0) - \mu I) = 0$$

Controlling chaos for hybrid systems

D. Ito, et al. Int. J. Bifur. Chaos, **24**, 10, 2014.

Controlling chaos by a threshold

D. Ito, et al. Int. J. Bifur. Chaos, **24**, 10, 2014.

- Controller perturbes the threshold value
- The threshold value converges when completed

In this talk, we propose...

Solve a threshold value of the limit cycle whose multiplier satisfies the specific stability.

Open-loop control; an example

Example: van der Pol oscillator with a threshold

Switched van der Pol oscillator:

$$\frac{d\mathbf{x}}{dt} = \begin{cases} \mathbf{f}_0(\mathbf{x}, \epsilon, \omega) & \text{if } \mathbf{q}(\mathbf{x}) \leqslant \mathbf{0} \\ \mathbf{f}_1(\mathbf{x}, \epsilon, \omega) & \text{otherwise,} \end{cases}$$
(2)

where,

$$\boldsymbol{f}_0 = \left(\begin{array}{c} \boldsymbol{y} \\ \boldsymbol{\epsilon}_0(1-x^2)\boldsymbol{y} - \boldsymbol{\omega}\boldsymbol{x} \end{array}\right), \quad \boldsymbol{f}_1 = \left(\begin{array}{c} \boldsymbol{y} \\ \boldsymbol{\epsilon}_1(1-x^2)\boldsymbol{y} - \boldsymbol{\omega}\boldsymbol{x} \end{array}\right).$$

 $x_{
m th}\in {m R}$ is a threshold value, $q({m x})=x-x_{
m th}\in {m R}.$ A solution:

$$\mathbf{x}_{i}(t) = \mathbf{\phi}_{i}(t, \mathbf{x}_{i0}), \quad \mathbf{x}_{i}(0) = \mathbf{x}_{i0}.$$
 (3)

Limit cycles of hybrid dynamical systems

The threshold value may change the stability of the cycle.

Sample phase portrait

$$\epsilon_{0}=$$
 0.2, $\epsilon_{1}=$ 0.1, and $x_{\mathrm{th}}=$ 0.1,

Bifurcation diagram

The derivative with the initial value of the Poincaré map:

$$\frac{\partial T}{\partial \mathbf{x}_0} = \prod_{i=0}^m \left. \frac{\partial T_{1-i}}{\partial \mathbf{x}_{1-i}} \right|_{t=\tau_{1-i}}.$$
 (4)

Each Jacobian matrix is given by:

$$\frac{\partial T_i}{\partial \mathbf{x}_i} = \left[I_n - \frac{1}{\frac{\partial q}{\partial \mathbf{x}} \cdot \mathbf{f}_i} \mathbf{f}_i \frac{\partial q}{\partial \mathbf{x}} \right] \frac{\partial \varphi_i}{\partial \mathbf{x}_i}$$
(5)

$$\Pi_{0} = \left\{ (x, y) \mid q(x) = 0, \frac{dx}{dt} > 0 \right\},$$

$$\Pi_{1} = \left\{ (x, y) \mid q(x) = 0, \frac{dx}{dt} < 0 \right\}.$$
(6)

The local map is written by

$$T_0: \Pi_0 \to \Pi_1; \quad \mathbf{X}_0 \mapsto \mathbf{X}_1 = \boldsymbol{\varphi}_0(\tau_0, \mathbf{X}_0), T_1: \Pi_1 \to \Pi_0; \quad \mathbf{X}_1 \mapsto \boldsymbol{\varphi}_1(\tau_1, \mathbf{X}_1).$$
(7)

The Poincaré map:

$$T(\mathbf{x}_0) = T_1 \circ T_0(\mathbf{x}_0). \tag{8}$$

Local coodinate

The local coordinate: $u \in \Sigma_0 \subset \mathbf{R}$

A projection p and an embedding map p^{-1} :

$$p^{-1}: \Sigma_0 \to \Pi_0, \ p: \Pi_0 \to \Sigma_0.$$
 (9)

The Poincaré mapping on the local coordinate:

$$T_{\ell}: \Sigma_0 \to \Sigma_0; \quad u \mapsto p \circ T \circ p^{-1}(u).$$
 (10)

The fixed point of the Poincaré mapping *u**

$$T_{\ell}(u_0) - u_0 = 0.$$
 (11)

The Jacobian matrix is given by

$$\frac{\partial T_{\ell}}{\partial u_0} = DT_{\ell}(u_0) = \frac{\partial p}{\partial \mathbf{x}} \frac{\partial T}{\partial \mathbf{x}_0} \frac{\partial p^{-1}}{\partial u}.$$
 (12)

The characteristic equation for the fixed point is given by

$$\chi_{\ell}(\mu) = \det (DT_{\ell} - \mu^* I) = 0,$$
 (13)

where μ^* is specified multiplier. We can obtain a parameter $x_{\rm th}$ with the specified μ^* by solving Eq. (11) and (13).

The derivative with $x_{\rm th}$ is required in Newton's method and is obtained from the previous study as follows:

$$\frac{\partial T_{\ell}}{\partial x_{\rm th}} = \frac{\partial p}{\partial \mathbf{x}} \frac{\partial T}{\partial x_{\rm th}}.$$
 (14)

Now we are ready to solve them for \boldsymbol{u}_0 and $\boldsymbol{x}_{\mathrm{th}}$.

- 1. Give the desired multiplier
- 2. Compute the threshold value satisfying the multiplier
- 3. Change the threshold value

Isocline, $\epsilon_0 = 0.2$

(a)
$$\epsilon_1 = 1.0$$

(b) $\epsilon_1 = 0.4$
(c) $\epsilon_1 = 0.3$
(d) $\epsilon_1 = 0.2$
(e) $\epsilon_1 = 0.1$
(f) $\epsilon_1 = 0.0$

 $E_r \Leftrightarrow x_{\rm th}$

Isocline, $\epsilon_0 = 0.2$

At point A, $\mu=0.4$

Features and advantages

- Change of the threshold value: an implicit parameter
 - No control energy is consumed
 - No explicit parameter is changed system unchanged
 - Transition: almost original system behavior
- Non-dynamical controller is realized

Concluding Remarks

- Stability with the threshold value for the given hybrid systems are computable
- A limit cycle holding a desirable stability is controlled by the threshold value
- The control scheme is easy: just change a threshold value stepwisely
- **NO TRANSITION**, No affection to the state variables, basically.

References

- K. Aihara, J. Imura and T. Ueta (eds), Analysis and Control of Complex Dynamical Systems, Springer, Tokyo, Mar. 2015.
- D. Ito, T. Ueta, T. Kousaka, J. Imura, and K. Aihara,
 "Controlling Chaos of Hybrid Systems by Variable Threshold Values," Int. J. Bifurcation and Chaos, Vol. 24, No. 10, 1450125, 2014.
- T. Ueta, S. Tsuji, T. Yoshinaga, and H. Kawakami, "Calculation of the isocline for the fixed point with a specified argument of complex multipliers," in Proc. IEEE/ISCAS 2001, Vol. 2, pp. 755–758, 2001.

This work has been supported by KAKENHI 25420373.

The authors also would like to thank Prof. Kawakami (Prof. Emeritus, Tokushima University) for his valuable advice regarding this work.